Regression data to predict the total count of bikes rented. Contains
13 features and 17379 observations. Target column is "count"
.
Examples
data("bike_sharing", package = "mlr3data")
str(bike_sharing)
#> Classes ‘data.table’ and 'data.frame': 17379 obs. of 14 variables:
#> $ date : chr "2011-01-01" "2011-01-01" "2011-01-01" "2011-01-01" ...
#> $ season : Factor w/ 4 levels "winter","spring",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ year : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ month : int 1 1 1 1 1 1 1 1 1 1 ...
#> $ hour : int 0 1 2 3 4 5 6 7 8 9 ...
#> $ holiday : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ weekday : int 6 6 6 6 6 6 6 6 6 6 ...
#> $ working_day : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ weather : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 1 1 1 1 ...
#> $ temperature : num 0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
#> $ apparent_temperature: num 0.288 0.273 0.273 0.288 0.288 ...
#> $ humidity : num 0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
#> $ windspeed : num 0 0 0 0 0 0.0896 0 0 0 0 ...
#> $ count : int 16 40 32 13 1 1 2 3 8 14 ...
#> - attr(*, ".internal.selfref")=<externalptr>